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Pair-potential and the Static Structure 
Factor in Liquid Metals 
L. G. OLSSON and U. DAHLBORG 
Institute for Reactorphysics, Royal Institute of Technology, S- 10044 Stockholm, 
Sweden. 

(Received M a y  20, 1981) 

Accurate neutron diffraction measurements of the static structure factor S ( Q )  for small wave- 
vector transfers Q have been used to obtain the “coarse” structure of the long-range part of 
the effective inter-particle potential in liquid aluminium, lead and bismuth. An extended version 
of the random phase approximation developed by Gaskell has been used. It is found that for 
Al and P b  the potential is of simple oscillatory nature while for Bi It is of ledge type. Finer details 
of the shape of the potential could not be evaluated. Methods to determine a good pair-potential 
by combining experimental results and molecular dynamics calculations are suggested. 

I INTRODUCTION 

For wavevector transfers Q > Qm, where Q, is the position of the principal 
maximum of the structure factor S(Q), the density fluctuations in a liquid 
are almost entirely caused by “excluded volume effects.” It is therefore 
reasonable to assume that S(Q)  in this Q-range is essentially governed by 
repulsive forces of short range. For smaller Q-values, particularly when Q 
tends to zero, it is on the other hand expected that the attractive forces 
between the particles are of increasing importance, although the effect of 
the repulsive ones cannot be neglected. Thorough molecular dynamics 
(MD) calculations by Hansen and Schiff,’ applying various repulsive inter- 
particle potentials, clearly indicate the importance of the repulsive forces 
on S ( Q )  even at small Q. Thus, the isothermal compressibility, proportional 
to S(O), will depend on both the attractive and repulsive parts of the pair- 
potential. 
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226 L. G. OLSSON AND U.  DAHLBORG 

Several different schemes, all approximate to some degree, exist in order 
to extract an effective inter-particle potential from a measured S(Q). For a 
review of these we refer to the excellent article by Barker and Henderson.2 
Recently Rosenfeld and Ashcroft3 suggested to use a modified hypernetted 
chain equation where the only free parameter can be determined by imposing 
thermodynamic consistency. Common to all these methods is that S(Q) 
over the full Q-range has to be used. In this report we will restrict ourselves 
to the region of small Q, thus, according to the discussion above, aiming 
mainly at a better understanding of the long range forces in a molecular 
system. Two different theories are then available, one developed by Gaskel14 
and one by Evans and S~hirmacher .~ Both represent a generalization of the 
random phase approximation (RPA). However, from numerical reasons and 
also due to the fact that it has not been tested against experimental data we 
have only tried the one obtained by Gaskell. 

During the recent years accurate measurements of S(Q) for Q in the range 
of 0.15 to 1.0 k1 have been performed for liquid Al, Pb and Bi.6 In order to 
use these data for our purpose we have thus utilized the improved random 
phase approximation by G a ~ k e l l . ~  In this theory a pair-potential, u(r), is 
assumed to describe the effective interaction between the particles. As in 
the RPA the potential is divided in two parts: 

u(r) = U O W  + u 1 W  (1) 

where uo(r) denotes the repulsive or short-range part and ul(r) the corres- 
ponding perturbation or long-range part; r is the distance from the particle to 
the origin. Compared to the ordinary RPA, valid for Q 6 Q,, Gaskell in- 
cludes correlation effects manifesting themselves as an extra term in the 
analytical expression of the RPA. This correction can be considered as an 
extension of the Q-range for the validity of the RPA as well as a check of the 
RPA itself. One ambiguity arises, however, when the pair-potential is divided 
in two parts as in Eq. (1). The division is quite arbitrary and it cannot be 
tacitly assumed that u l ( r )  is vanishing inside the range of CT of the repulsive 
forces. The effect on this of S ( Q )  must in some way be tested for each tried 

Another uncertainty which has to be taken into account is the hardness 
of the core. In order to make an analysis meaningful the main character of 
uo(r) must be known at least in terms of being of hard or soft repulsive 
nature. The structure factors So(Q), based on pure repulsive potentials 
uo(r) - r - ” ,  do not differ very much and describe the experimental S(Q)  
for simple “hard” systems like A1 and Pb reasonable well if Q > Q,/2 and 
n 9 1. For instance, according to the M D  calculations by Hansen and 
Schiff’ the principal maximum for a hard-core system as well as a system of 
particles governed by a r-9-potential agree both within 10% with measured 

form of C ~ , ( r > l l > O .  
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PAIR POTENTIAL IN LIQUID METALS 

data (with exception of the more complex liquids as Ga and Bi). The cor- 
responding situation holds for “soft” systems like liquid Na and Rb (a - 4). 
It should be mentioned that there is also a minor phase shift of the oscilla- 
tions of the calculated and measured structure factors. This is, however, 
supposed to be caused by the omission of attractive forces in the MD 
studies. It is on the other hand interesting to note that for Q < Qm/2 the 
structure factors So(Q) differ clearly for different uo(r) and discrepancies of 
the order of 100% between the computed (MD) and measured data fre- 
quently occur. 

In spite of these difficulties, it should be possible to obtain empirical in- 
formation about the attractive forces (or ul(r)) by restricting the comparison 
of the calculated and measured S ( Q )  to small Q, if we also include the hardness 
of the reference system as a variable. In the present studies of liquid Al, Pb 
and Bi we have thus chosen ri to be in the range 6 I n I 00. In Section I1 
of this report the basic formulas and the numerical methods used to analyse 
the structure factors are briefly described. The results are compiled graphic- 
ally in Section I11 and discussed in some detail. The conclusions are finally 
summarized in Section IV. 

221 

II BASIC FORMULAS AND NUMERICAL METHOD 

The structure factor according to the improved RPA by Gaskel14 can be 
expressed in the following way 

where S(Q) and So(Q) thus are the structure factors for the real and reference 
systems, respectively, and Q the wavevector transfer in the scattering process. 
The remaining terms are defined by the relations 

u = (Q2 + k2 + 2kQp)’I2 (2d) 
p is the number density of the system and p the cosine for the angle’between 
the Q and k vectors. uT(r) = u,(r)/k,T is the perturbation potential that 
should be assigned the repulsive potential v;(r), also in units of k, T (com- 
pare Eq. (1)); kB and T have their usual meanings. In order to arrive at any 
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228 L. G. OLSSON AND U. DAHLBORG 

results applying Eq. (2) it is convenient to assume analytical expressions for 
uT(r) making it possible to numerically evaluate the Fourier transform 
(Eq. (2b)) and the integral (Eq. (2c)). A rather elaborate expressions containing 
6 adjustable parameters was chosen in the present studies. It consists of a 
sum of a differentiated Gaussian function with a weight function displaceable 
along the r-axis and an exponential function. Such a combination of analyti- 
cal expressions allow very different shapes of uf(r) ,  from a one-period oscilla- 
ting function to a simple exponential one. It is thus assumed that all kinds of 
oscillations of larger periodicity are damped out (further discussed below). 

Thus the following expressions were used to describe u:(r) for r 2 0 :  

C4 exp( - C6 r )  
r 

uT(r) = w(r) . exp[- C,(r - ro)’] + 

w(r) = C2 .exp[-C,(r - C,)’] - ( r  - ro) urn 
ro = a + (2C3) - l j 2  

and for r < a: 

uT(r) = 0 (type I potential) 

uT(r) = [ U T ( O ) ] ~ ~ ~  (type I1 potential) (3b) 

Due to the ambiguity of the definition of the perturbation potential for 
r < o (a is the effective hard-core diameter ascribed to the particles) two 
limiting cases have been considered for each tried reference system (compare 
Section I). Furthermore, the exponent rn was always put equal to 0 for the 
type I potential and 2 for the type I1 case. For reference systems we used the 
hard-core system’ and the MD results by Hansen and Schiff’ for the r - 1 2  

-and r-6-potentials. It  should also be mentioned that the MD results 
were obtained at a number density po corresponding to the crystallization 
point. The correction to the number density of the real system, p,  was per- 
formed in the following way: 

where the subscripts MD and hc refer to the molecular dynamics and the 
hard-core results, respectively. This density correction is quite arbitrary and 
may be justified as long as the ratio calculated on basis of the hard-core 
system appears to be close to 1. 
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111 RESULTS AND DISCUSSION 
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A. 

The structure factor S(Q) according to Eq. (2) was calculated using the 
expressions in Eq. (3) for the perturbation potential u:(r) and a fixed reference 
system S,(Q). Some test calculations were performed on a hard-core system, 
but the results of these should also be relevant for other types of reference 
systems. The aim was to study the numerical stability and the features of 
S(Q) due to changes in u:(r). The calculations were carried through with the 
parameters Ci, i = 1, . . . , 6, chosen to give widely different shapes of U?(Y) 
without any physical meaning. Extra terms of oscillating character (not 
accounted for in Eq. (3)) were also added in order to investigate the effects 
of the rapid truncation of uT(r) and a superimposed “ fine-structure’’ on 
uT(r), respectively. The results are compiled in Figure 1. The hard-core 
diameter (T was put equal to 2.59 A, i.e. the value appropriate for liquid Al. 
The analytical forms available from Eq. (3) are subsequently also referred to 
as the “coarse structure” of the perturbation potential. 

In Figure 1A the effects on S(Q) of two opposite shapes of the coarse 
structure of u:(r) are shown. If uf(r) is made positive and monotonically 
decreasing the corresponding S ( Q )  at small Q falls below S,(Q) for the refer- 
ence system. If, on the other hand, @(r) in a similar way is made negative 
S(Q) exceeds S,(Q) for small Q. The latter result is in agreement with the 
sticky hard-sphere model,’ which prescribes a considerable increase of the 
compressibility compared to the pure hard-core model. The discrepancies 
between S(Q) and S, (Q)  in these two extreme cases are very large. In practice 
some kind of an oscillatory behaviour of uT(r) is more likely for liquid metals 
and the deviations from S,(Q) smaller. 

In Figure 1B we show some results from the numerical tests with respect 
to the fine-structure and truncation of uT(r). A given uT(r) (solid line) was 
modified to give the curves denoted by the dash-dotted and dotted lines. 
The calculations were carried through with the imposed condition that 
S(Q) should not change more than about 10% which is a realistic error of a 
measured S(Q) in this Q-region. It is seen that a fairly large modification of 
@(r)  can be allowed, if it occurs close to the minimum of the potential. If, 
however, an oscillation is still persisting at large r its amplitude must be 
made very small otherwise S(Q) will obtain unrealistic values. It is possible 
that a r-dependent period of the oscillations could allow a larger amplitude 
but in such a case the periodicity must be known in great detail. Therefore 
such types of oscillations, including the Friedel ones, in uT(r) besides the 
coarse structure are omitted in the subsequent analysis. It should also be 
mentioned that the small deviations in S(Q), due to the previously discussed 
modifications of z$(r), could easily be fully compensated for by minor changes 

Basic Properties of the Method for Analysis 
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230 L. G. OLSSON AND U. DAHLBORG 
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FIGURE 1 The main features and the numerical stability of the computer routines based on 
Gaskell's t h e ~ r y . ~  The reference system, a hard-core system (broken lines), is kept fixed while 
the perturbation potential is varied. Upper plots give the tried potentials and the lower ones the 
corresponding structure factors. All the denotations are mutually connected. (A) The main 
characteristics due to  a very simple form of the perturbation are shown for two opposite cases. 
(B) The effects of additional oscillations to a given shape of the perturbation potential (solid 
lines). (C) The impact on the structure factor caused by variation of the amplitude of the per- 
turbation potential. The calculation is restricted to a one-period oscillatory potential (see the 
text). 

of the parameters Ci in the original expression of ur(r), Eq. (3). In Figure lC, 
finally, the effects of amplitude changes of a given coarse potential shape are 
studied. A perturbation ur(r) nearly symmetric around the r-axis was 
selected. It is demonstrated that large changes of uT(r) cause only modest 
variations in S ( Q )  at small Q. It is probable that such discrepancies can be 
compensated for to give the same small Q values of S(Q) by combining the 
different perturbations with a reference system S,(Q) somewhat modified, 
but still with the characterization hard, n > 6 (or soft if such a system is 
studied). 

The test calculations thus indicate that the adopted method of analysis 
(Section 11) can only provide a first approximation of the coarse structure of 
the perburbation potential uT(r). Fine-structure effects superimposed on 
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PAIR POTENTIAL IN LIQUID METALS 23 1 

uf(r) can be compensated for to give a correct S(Q) at small Q, a modified 
reference system S,(Q) allows changes of the amplitude of uf(r) as large as 
25 %, etc. In the present investigations we have therefore concentrated our 
efforts to establish some h i r i n g  shapes of oT(r) with respect to S,(Q) and 
the ambiguity of the perturbation potentials at small r .  The parameters Ci 
in Eq. (3) are in the following determined by a least-square fitting procedure 
utilizing S(Q)  according to Eq. (2) and experimental data contrary to the 
previous test calculations. 

6. 

Remembering the lack of uniqueness between S(Q) and v f ( r )  discussed 
above, the effect on uT(r) caused by using different reference systems S,(Q) 
has to be investigated in more detail. It is expected that the repulsive forces in 
liquid Al, Pb  and Bi are relatively hard implying that a pure hard-core 
system and the MD data for a r - 1 2  and a r-6-potential' were tried. For 
each case both the type I and I1 approximations were included in the cal- 
culations (Section 11). The measured S(Q), utilizing the neutron scattering 
technique,6 cover the Q-range 0.19 to 1.5 k'. The final results are given in 
Tables 1-111. The data have been thoroughly corrected for all instrumental 
effects as well as the multiple scattering contamination. The temperatures, 
at which the experiments were carried through, were chosen a few tens of 
degrees higher than the corresponding melting points, i.e. 705,350 and 305°C 
for Al, Pb  and Bi, respectively. Furthermore, for Q < 0.8 A-1 the measured 
S(Q)  could be reproduced by a parabolic function, the parameters of which 
were evaluated by means of least-square fit procedures (Table IV). The final 
comparison of the measured and calculated data was carried through utilizing 
this parabolic function plus S(0) calculated from the compressibility values 
according to ultra-sound measurements.' There is a range 0 < Q < 0.19 

The Effects of Various Reference Systems 

TABLE I 

Measured S(Q) for liquid aluminium at 705°C 

Q S(Q) Q S(Q) Q S(Q) 

0.208 0.019 f 6 
0.254 0.022 f 5 
0.299 0.021 & 5 
0.344 0.024 f. 4 
0.390 0.025 & 4 
0.435 0.021 k 4 
0.480 0.022 f 4 
0.525 0.026 & 4 
0.571 0.022 2 4 

0.616 
0.661 
0.706 
0.752 
0.797 
0.842 
0.887 
0.932 
0.977 

0.029 & 3 1.022 
0.031 f 3 1.068 
0.030 f 4 1.113 
0.039 f 4 1.158 
0.041 f 4 1.203 
0.046 & 4 1.248 
0.044 & 4 1.293 
0.054 f 4 1.338 
0.052 4 

0.055 & 4 
0.062 f 4 
0.059 f 4 
0.060 & 4 
0.069 4 
0.065 f 4 
0.069 & 4 
0.071 If: 4 
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232 L. G. OLSSON AND U. DAHLBORG 

TABLE I1 

Measured S(Q)  for liquid lead at 350°C 

Q S(Q) Q S(Q) Q S(Q) 

0.190 
0.2 I7 
0.245 
0.272 
0.299 
0.326 
0.353 
0.381 
0.408 
0.435 
0.462 
0.489 
0.516 
0.544 
0.57 1 
0.598 
0.625 

0.007 f 2 0.652 
0.011 k 2 0.679 
0.012 k 2 0.706 
0.013 k 2 0.733 
0.012 f 2 0.761 
0.012 f 2 0.788 
0.013 f 2 0.815 
0.018 f 2 0.842 
0.014 k 2 0.869 
0.016 f 2 0.896 
0.016 k 2 0.923 
0.016 f 2 0.950 
0.016 f 2 0.977 
0.019 f 2 1.004 
0.019 k 2 1.031 
0.022 & 2 1.059 
0.027 & 2 1.086 

0.022 f 2 1 .1  13 
0.024 f 2 1.140 
0.023 k 2 1.167 
0.027 k 2 1.194 
0.025 f 2 1.221 
0.029 f 2 1.248 
0.032 f 2 1.275 
0.031 f 2 1.302 
0.033 f 2 1.329 
0.030 f 2 1.356 
0.034 f 2 1.383 
0.034 f 2 1.409 
0.034 f 2 1.436 
0.038 f 2 1.463 
0.045 f 2 1.490 
0.045 f 3 
0.051 f 3 

0.047 f 3 
0.058 3 
0.059 f 3 
0.055 f 3 
0.057 k 3 
0.063 k 3 
0.070 f 3 
0.070 f 3 
0.072 k 3 
0.078 f 3 
0.078 f 3 
0.088 f 3 
0.096 f 4 
0.097 4 
0.105 f 3 

Q 

TABLE 111 

Measured S(Q) for liquid bismuth at 305°C 

S(Q) Q S(Q) Q S(Q) 

0.200 
0.245 
0.290 
0.335 
0.380 
0.425 
0.470 
0.515 
0.560 
0.605 

0.015 f 5 
0.008 f 4 
0.010 f 4 
0.012 f 4 
0.010 k 4 
0.011 f 4 
0.017 f 4 
0.014 f 3 
0.015 f 3 
0.020 f 3 

0.650 
0.695 
0.740 
0.785 
0.830 
0.875 
0.920 
0.965 
1.010 
1.055 

0.019 f 3 1.100 0.050 f 4 
0.024 f 4 1.145 0.052 f 4 
0.027 & 4 1.190 0.061 & 4 
0.021 k 4 1.235 0.066 f 4 
0.025 k 4 1.280 0.071 k 4 
0.026 & 4 1.325 0.082 f 4 
0.037 f 5 1.370 0.101 k 4 
0.049 f 4 1.415 0.117 f 4 
0.043 4 1.460 0.139 f 5 
0.048 & 4 

A- I ,  where experimental data are missing but we believe that this is of little 
importance in the present analysis. It should also be mentioned that no clear 
minima in the least-square fits were indicated during the computer runs to 
evaluate Ci, i = 1, . . . , 6 .  This may be due to the parameters Ci not being 
linearly independent and/or the lack of uniqueness between S(Q) and vT(r). 
After about 15 iterations the parameters tended to oscillate around certain 
average values. 

Before the results concerning the region of small Q are discussed it might 
be pertinent to show how well the selected reference systems S,(Q) in general 
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PAIR POTENTIAL IN LIQUID METALS 

TABLE IV 

Parameters used to describe the hard-core reference systems and the experimental S(Q) = 

ao + a iQZ 

233 

Hard-core 
Temp. Density diameter 

Substance J K  1 Iatoms/A31 IA l  00 0 1  

A1 705 0.0527 2.59 0.0179 + 0.0017 0.030 + 0.002 
P b  3 50 0.03 10 3.12 0.0091 + 0.0013 0.030 & 0.002 
BI 305 0.0280 3.00 0.0091 k 0.0028 0.030 k 0.002 

Bi 305 0.0280 3.23, 2.45" 0.0091 k 0.0028 0.030 k 0.002 

*Refers to the double-shell system 

TABLE V 

Position (Q,) and height of main peak of experimenlal 
S ( Q )  and of the S ( Q )  calculated by Hansen and Schiff' 

for repulsive potentials u(r)  - r - "  

Al 2.68" 

Bi 2.08' 
Experimental data P b  2.2Ib 

Al 2.68 
n = w  P b  2.24 

Bi 2.21. 2.10" 

A1 2.72 
n = 12 Pb 2.26 

Bi 

Al 2.10 
I I  = 6 P b  2.24 

Bi 

- 

- 

2.48" 
2.7Sb 
1.90" 

2.70 
2.88 

1.95. 1.95" 

2.53 
2.72 

2.48 
2.66 

Ref. 10. 
Ref. I I .  
' Ref. 12. 

Ref. 13. 

reproduce the measured S(Q)  for larger Q-values, considering the fact that 
no attractive forces are present in the calculated data. In Table V the positions 
and intensities of the principal maxima of S,(Q) and S(Q) are tabulated 
together with other relevant information about the three systems. It is also 
seen that for liquid Bi simple reference systems, like the hard-core model, 
reproduces the experimental S ( Q )  rather bad, which could perhaps be 
expected because of the complexity of the electronic structure of Bi. The 
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-0.5. 
Q 

I “  

0.5 

Q -0.5 
1 1 .  

! i  

AB 
FIGURE 2 The perturbation potential t.T(r) = ul(r ) /kB T and the corresponding structure 
factor S ( Q )  for liquid Al at 705°C. (A) S ( Q )  for a hard-core system (broken lines) and the corres- 
ponding results using Gaskell’s theory. Solid lines denote the type I and dash-dotted lines the 
type 11 potential, The experimental data are given by the dots (neutron scattering)6 and the 
circle (ultrasound).’ (B) The same results for a reference system based on a repulsive pair- 
potential of r-”-type.’ 

final results for z$(r) and the corresponding S ( Q )  for Q < 0.5 A- are shown 
in Figures 2,3 and 4 for liquid Al, Pb and Bi, respectively. 

In the case of A1 and Pb the hard-core results are plotted in Figure A ,  
solid lines for type I potential and dash-dotted in the case of type II potential. 
The ones based on a r-12 repulsive potential are shown in Figure B with the 
same notations. The results concerning the r-6-potential are excluded, 
because the only difference from the r-12-case is that the positive amplitude 
of vT(r) is somewhat smaller. In all plots S,(Q) is reproduced by a broken 
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A 

d-T-l-4 o 0.1 a2 0.3 \ / A  ; 1 ;  ; ; A  

FIGURE 3 The perturbation potentials u:(r) and the corresponding S ( Q )  for liquid P b  
at 350°C for a hard-core system, Figures, 3A, and a reference system based on a r-”-potential, 
Figures 3B. All the denotations are the same as  in Figures 2. 

line. For Pb  it is clear that S,(Q) for the hard-core system overrides the 
measured S ( Q )  for Q < 0.3 kl, somewhat less if a softer repulsive poten- 
tial is used for the reference system. In the case of A1 the behaviour is about 
the same but much less pronounced. In fact, the reference system describes 
the experimental S ( Q )  rather well even at small Q, which may be due to the 
high density of A1 (Table IV). The results for A1 may therefore be more un- 
certain. The differences between the reference systems, observed for A1 and 
Pb, are compensated for by a suitable choice of Ci, giving the perturbation 
potentials uT(r) shown in the figures. The agreement between the calculated 
S(Q) according to the Gaskell theory and the measured S(Q)  is satisfactory, 
the latter ones being represented by the parabolic function discussed above 
(dots). It is also seen that when the reference system vg*(r) is made softer the 
effects on vT(r) is that the minimum becomes deeper for both type I and I1 
potentials, an effect particularly clear for Pb (Figure 3). The main difference 
between the type I and I1 potential shapes is that in the latter case the positive 
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l o o m a )  Vi(r)/keT - 
1.0- _ / - -  4------- 
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3- 0.5 - 
- 

r 
2- 0-  A 

a 
0 

I I 

_ -  - - -  0 

0- 0 0.1 0.2 0.3 1/A ; ; ! . A  
FIGURE 4 The perturbation potential u: ( r )  and the corresponding S(Q)  for liquid Bi at 
305°C. In Figures 4A the results for an ordinary hard-core system are shown and in Figures 4B 
the ones due to a double-shell hard-core model (see further the text). The denotations are similar 
to the ones in Figures 2 and 3. 

amplitude of vT(r)  has increased, most evident for A1 (Figure 2). The observed 
differences between the tried “limiting cases” are considerable. It is obvious 
that in order to get a more accurate information about the coarse structure of 
the perturbation potential, u$(r) must be known to a very good accuracy as 
well as the behaviour of uT(r) for r < 0. 

For liquid Bi two different hard-core systems were considered, the ordi- 
nary hard-core model and a double-shell modeli3 (Table V), because the 
reproduction of the principal maximum with the former model was not 
satisfactory even with the hard-core diameter c f  as a free parameter. The 
double-shell system is constructed in order to describe the anomaly of the 
main peak of S(Q)  and implies that one assumes the existence of two different 
types of Bi atoms in the melt. From the Figures, 4A and B it can be seen that 
the two corresponding S,(Q) differ about 20% but both of them disagrees 
with the measured S ( Q )  by a factor 3 to 4. It should also be mentioned that 
the two-shell model, using Orton’s parameters,’ describes the principal 
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PAIR POTENTIAL IN LIQUID METALS 231 

maximum of S(Q)  for Bi very good. The perburbation potential uT(r) ex- 
hibits no significant difference for the two reference systems except that the 
amplitudes are smaller for the double-shell model. Contrary to A1 and Pb 
the type I1 potential for Bi has a smaller amplitude than the type I. It is, how- 
ever, obvious that ui(r )  in liquid Bi is quite different from that in liquid Pb. 
The very special shape of uT(r) in the case of Bi is a direct consequence of 
the unusually large discrepancies between S,(Q) and S(Q)  at small Q. As it is 
obtained from two widely different hard-core reference systems, it most 
probably has same main features as a u:(r) representative for the real liquid. 
Softer repulsive forces are certainly more realistic and may cause minor 
changes of the corresponding uT(r) regarding the results on liquid A1 and 
Pb. We are, however, confident that the difference between a softer reference 
system and the measured S(Q) would still be much larger for Bi than observed 
in the case of Pb  or A]. 

It should also be emphasized that from pure numerical reasons a mono- 
tonically decreasing and positive function for uT(r) would probably also 
give a correct S(Q)  for small Q, compare Figure 1A. Such shape has, however, 
been discarded on physical grounds. 

1 

0- 015 l!O 115 l / i  
FIGURE 5 The various terms l/Si(Q) contributing to the structure factor according to 
Caskell’s theory for liquid A1 at 705°C (Eq. (2) in the text). The following denotations are used: 
vertical bars are measured l/S(Q), solid line the computed l/S(Q) and broken line the reference 
system l/S,(Q)-based on a r-”-potential. The terms I/S,(Q) and l/S,(Q) are given by the 
dash-dotted line and by the dotted curve, respectively. l/S(Q) is thus equal to the sum of the 
three terms I/Si(Q). 
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238 L. G. OLSSON AND U. DAHLBORG 

C. Comparison of the Components Entering the Calculated S(Q) 

One example of the various contributions l/Si(Q), defined by Eq. (2), is 
plotted in Figure 5 for A1 and in Figures 6A and B for Pb  and Bi, respectively. 
The reference systems S,(Q) for A1 and Pb are based on the r-" repulsive 
potential, while in the case of Bi the two-shell hard-core model was selected. 
It is seen that the term l/S,(Q) (dotted curves) is of little importance except 
for Al. It is interesting to note that Gaskell's model, reproducing the mea- 
sured l/S(Q) very well for small Q, starts to oscillate for Q > 0.5 A-' simul- 
taneously as the reference system starts to describe the experimental values 
fairly well. It must, however, be pointed out that similar plots can be obtained 
for other reference systems. The contributory terms are then somewhat 
different but the final fits will be equally good. It is also worth noticing the 
different magnitudes of the term l/S,(Q) for Pb  and Bi, again indicating that 
the perturbation parts @(I) are very different for these two liquid metals. 
There is, furthermore, a small region in Q within which neither the Gaskeli 
expression nor the reference system describes the measured data, particular 
clear for Al. This window widens when the range of $(r)  increases, an effect 
mainly reflected in the term l/Sl(Q). 

A i 1 B 

I I I I 

0 0.5 1.0 1.5 

FIGURE 6 The various terms l / S i  (Q) contributing to the structure factor for liquid Pb at 
350°C (Figure A) and for liquid Bi at305"C (Figure B). The reference system for Bi is the double- 
shell hard-core model. Notations are the same as in Figure 5. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
0
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



PAIR POTENTIAL IN LlQUlD METALS 239 

IV CONCLUSIONS 

The object of the present studies of S ( Q )  at small Q was to establish the coarse 
structure of the attractive part of the effective pair-potential (or the perturba- 
tion part to a given reference potential) for liquid Al, Pb  and Bi. It was found 
that for A1 and Pb this part of the potential is of simple oscillatory nature 
while for Bi it is of ledge type. Thus the shoulder of the large Q side of the 
main diffraction peak for Bi can be related to a particular shape of an effective 
pair-potential. Such a relation was earlier suggested for another semi-metal, 
ga1 l i~m. l~  It was further concluded that finer details in the shape of the 
perturbation potential cannot be uniquely revealed in the present way of 
analysing the experimental data. Small oscillations superimposed on the 
potential may very well exist but cannot be verified, because their effects on 
S ( Q )  at small Q are too small. Oscillations occurring at larger Y give, if their 
amplitudes are not small, rise to numerical instabilities in the calculations. In 
such cases the periodicity of the oscillations is probably of great importance. 

Concerning the coarse structure of the perturbation potential we have 
particularly studied two obstacles that make a more accurate analysis diffi- 
cult : 

1) The shape of the perturbation at small Y, i.e. inside the range of the 
repulsive forces, has a clear effect on the results. The amplitude of the oscilla- 
tion of the perturbation increases in going from the type I to the type I1 case. 
Differences of the order of 30% are indicated, when we try to compensate 
for this in order to obtain a correct small Q-behaviour of the calculated 
S(Q). This ambiguity might be resolved by applying the optimized random 
phase approximation (ORPA).' This has not been done in the present work. 
However, a shape of U?(Y) in between the two types is probably realistic in 
terms of the ORPA.I6 

2) The behaviour of So@) for the reference system at small Q is also 
affecting the shape of the perturbation potential. When the repulsive forces 
get softer the negative parts of the perturbation increase, while the positive 
ones are nearly unchanged (except for Bi). As the strength of the repulsive 
forces are not known with any greater accuracy (say n = 10 & 3 in uo(r) - 
Y - "  for A1 and Pb) there will be an additional uncertainty in the amplitude 
of the derived perturbation potential, particularly the negative part. If the 
system can be classified as a hard or soft repulsive one the errors stay within 
25 % of the total amplitude when a correct small Q-behaviour is forced upon 
the calculated S(Q).  

Thus, these results indicate that if one intends to study the complete 
pair-potential by looking only at the corresponding S ( Q )  using, e.g. MD 
computations, it is necessary that the following three conditions are fulfilled. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
0
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



240 L. G. OLSSON AND U. DAHLBORG 

1) The analysis must cover the entire Q-range from 0 to very large values. 
2) The measured S(Q) must be very accurate, the greatest allowable 

error is a few percent (in relative scale). This must hold also for the small Q 
region. 

3) The S(Q) obtained from MD data must agree with the measured one 
within the statistical limits of error of the calculation. Otherwise no quantita- 
tive conclusions can be drawn about the actual shape of the effective pair- 
potential. 

At present the M D  calculations must be performed using the trial-and- 
error method, because sufficiently accurate information about the pair- 
potential is lacking. Such a procedure will thus be very tedious. An alternative 
approach would be to make use of the dynamical information about the 
systems in question. M D  studies of the pair-distribution function and the 
diffusion coefficient for given repulsive forces and different attractive ones 
have shown that the diffusion coefficient varies considerably with the shape 
of the attractive part of the pair-potential, while the pair-distribution func- 
tions is changing only little.' This implies that the self-motion of the particles 
is of main interest. This is also reflected in the dynamical structure factors 
although in a more involved way. The combination of structural and dy- 
namical information is probably a more fruitful approach, as we will always 
face experimental data with a limited accuracy. The ability of a certain pair- 
potential to reproduce the measured S(Q) ,  within the limits of error, by- 
for instance-MD computations is a necessary condition, but not sufficient. 
The dynamics of the computer simulated system must agree with the corres- 
ponding measured data equally well. 
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